William Herring, M.D. © 2004

The Heart: Inside Out

To exit program, use back button on your browser

Intraluminal Lesions

Tumors and Thrombi

Cardiac Tumors

- Rare
- Metastatic tumors are 20x more common than primary
 - Melanoma, lymphoma, lung and breast most frequent
- Most mets involve the pericardium

Cardiac Tumors

- In children, most common tumor is rhabdomyoma
 - Tuberous sclerosis; multiple, IV septum
- In adults, most common benign tumor is myxoma
 - Angiosarcoma most common malignant
 - ▲ Usually right-sided

Myxomas

- Most common 1° benign cardiac tumor
- Usually found in left atrium
- Arise from inter-atrial septum
- About 10% calcify

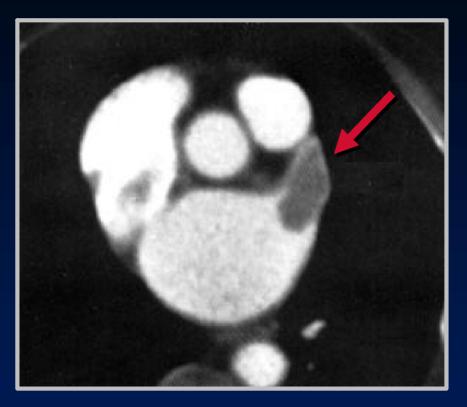
©Miller-Requisites

Myxoma in Left Atrium

Ventricular Thrombi

- In left ventricle
 - After MI
 - In a ventricular aneurysm
- Filling defects in opacified cardiac chamber
- May calcify

Ventricular Thrombi

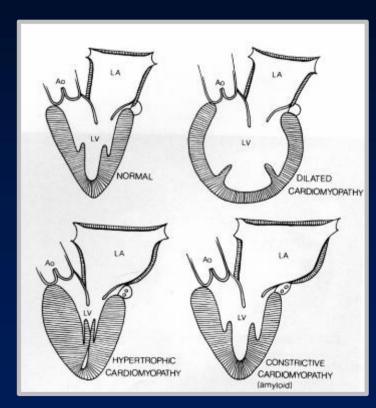

- Occur on cardiac walls that are akinetic
 - Usually at cardiac apex or along IV septum
- Biggest pitfall
 - May be confused with posterior papillary muscles
 - Look for thickened chordae

Thrombus in Right Ventricle

Atrial Thrombi

- Commonly associated with LA enlargement
- Most frequent in mitral stenosis with atrial fibrillation
- Left atrial appendage a frequent site

©Elliot-Cardiac Imaging

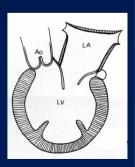

Thrombus in left atrial appendage

Myocardium

Cardiomyopathy

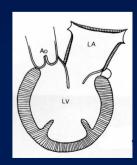
Classification

- Dilated cardiomyopathy
- Restrictive cardiomyopathy
- Hypertrophic cardiomyopathy
- Arrhythmogenic right ventricular dysplasia

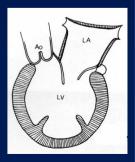


©Elliot-Cardiac Imaging

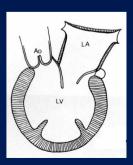
Dilated Cardiomyopathy


Dilated Cardiomyopathy

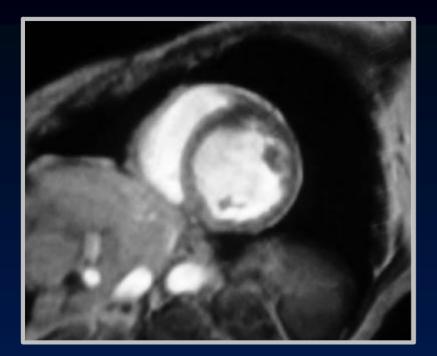
- Dilatation of both ventricular cavities
 - Increased cardiac mass
- Over 75% have mural thrombi
 - Most often LV>RV>RA>LA
- More than half of patients are alcoholics

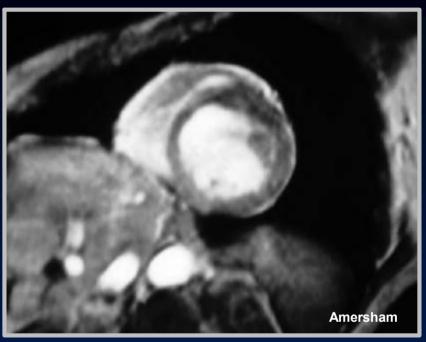

Dilated Cardiomyopathy Other Causes

- Idiopathic
- Coronary artery disease
- Myocarditis
- Lupus
- Viral infection

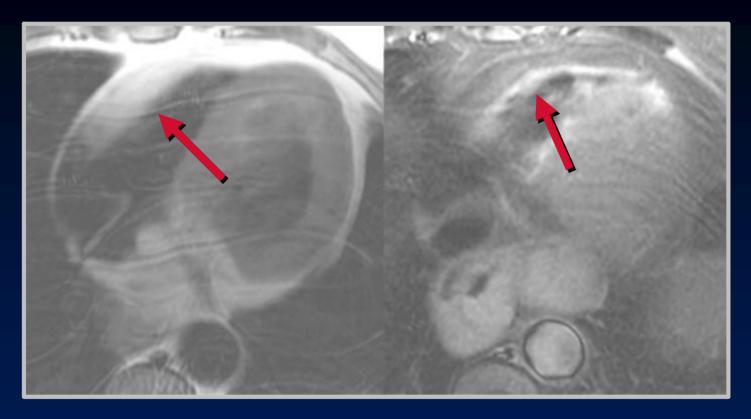

Dilated Cardiomyopathy Clinical

- Poor systolic ventricular function
 - Pooling in diastole leads to thrombogenesis
- Severe, intractable CHF is dominant symptom
 - Usual cause of death


Dilated Cardiomyopathy Imaging Findings


- Cardiomegaly
 - Usually involves left ventricle
- CHF common
- Echo: poor global wall motion
 - Wall thickness usually thin

Dilated Cardiomyopathy


End systole End diastole

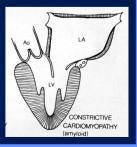
Dilated Cardiomyopathy

Cine MR images in the short axis plane show little change in size between end diastole and end systole

Arrhythmogenic Right Ventricular Dysplasia

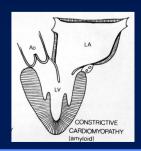
- Rare cardiomyopathy
- Arrythmias and sudden death
 - Younger age group
- RV anterior free wall replaced by fat and fibrous tissue
 - Thinning of ant wall; more fat than normal
- Dilated RV, aneurysms and tricuspid regurgitation

Arrhythmogenic Right Ventricular Dysplasia

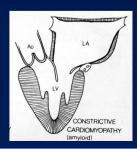

Left-thickening and replacement of RV anterior wall by fatty tissue.

Fat suppression (right) - loss of signal in RV anterior wall, confirming fatty nature of these changes

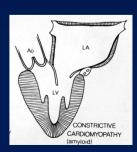
Restrictive Cardiomyopathy


Restrictive Cardiomyopathy General

- Least common
- Normal ventricular size
- Inability of the ventricles to fill properly
- Thick LV wall and dilated LA


Restrictive Cardiomyopathy General

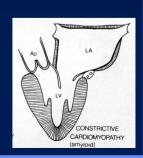
- Mural thrombi occasionally
- Resembles constrictive pericarditis
- Biopsy may be needed


Restrictive Cardiomyopathy Causes

- Associated with extracellular infiltration
 - Amyloid
 - Sarcoid
 - Glycogen storage diseases
 - Mets
 - Radiation

Restrictive Cardiomyopathy Imaging Findings

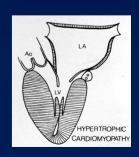
- Little cardiomegaly
 - Walls are stiffened
- CHF common
- Echo: Normal-sized LV
 - Dilated left atrium
 - Pericardium not thickened



Amersham

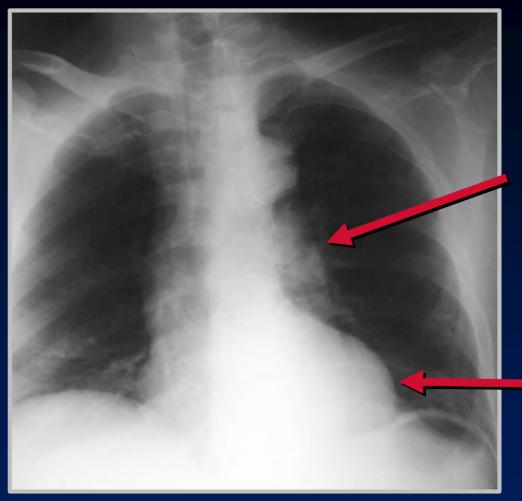
Restrictive cardiomyopathy

ECG-gated spin-echo image - enlargement of both atria and normal size of ventricles with thickened walls



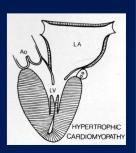
Hypertrophic Cardiomyopathy (HCM)

Hypertrophic Cardiomyopathy

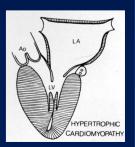

Idiopathic Hypertrophic Subaortic Stenosis

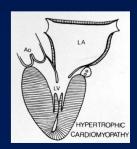
- Severe LV, and sometimes RV, hypertrophy
 - Thickened IV septum
- No ventricular enlargement
 - At least initially
- Divided into primary and secondary
- Further divided into those with and without LVOT obstruction

Hypertrophic Cardiomyopathy Secondary, Non-obstructive

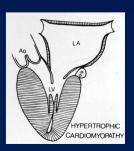

- Non-obstructive hypertrophic cardiomyopathy (HCM) is common
- Seen with high blood pressure
- Concentric and uniform thickening of LV wall

Uncoiled aorta

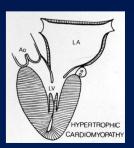

Prominent LV


Hypertrophic Cardiomyopathy Primary

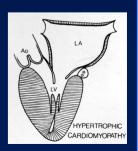
- Another cause of HCM is genetic
 - Autosomal dominant with variable penetrance
- Hypertrophy may be concentric or localized
 - Asymmetric septal hypertrophy (ASH)
 - ▲ IV septum is 1.5x thicker than posterior LV wall
 - Disproportionate upper septal thickening (DUST)


Hypertrophic Cardiomyopathy Primary

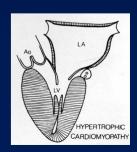
- May appear from birth to old age
- Common cause of sudden cardiac death in patients < 40 yrs old
 - Most common cause of death amongst competitive athletes
- About 1/3 have LVOT obstruction

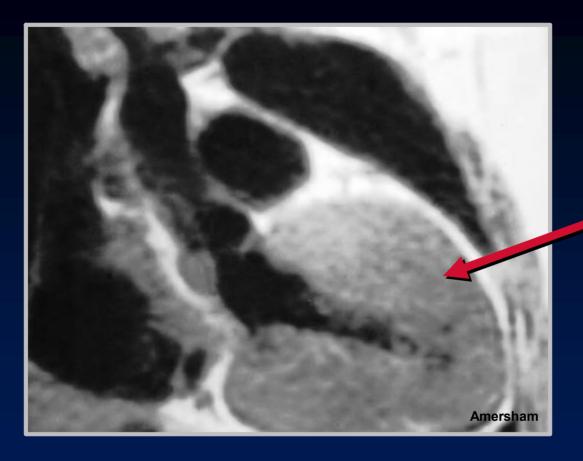

Hypertrophic Cardiomyopathy Primary

- Unlike DC with hypokinesis, HCM is hyperkinetic
 - LV empties too completely
- Atria attempt to compensate and enlarge
 - Much larger atria than in DC

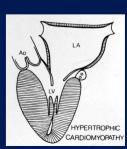

Hypertrophic Cardiomyopathy Obstructive (HOCM)

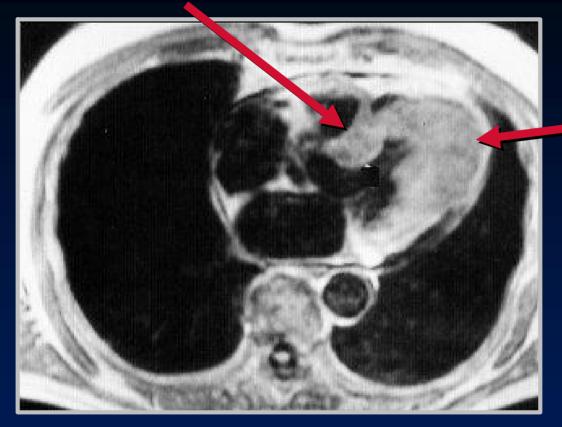
- Hallmark: dynamic subvalvular aortic stenosis
- Anterior leaflet of mitral valve moves into LVOT on systole
 - Systolic Anterior Motion (SAM) of mitral valve
 - Occludes LVOT


Hypertrophic Cardiomyopathy Obstructive (HOCM)


- Neither ASH nor SAM is specific for HOCM
 - E.g. ASH also seen in Pulmonic Stenosis
 - SAM also seen in Transposition of Great Vessels

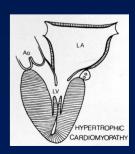
Hypertrophic Cardiomyopathy Imaging Findings


- Usually normal-sized heart
 - Left atrium may be enlarged 2° MR
- CHF not common
- Echo: LV hypertrophy
 - ASH
- Dynamic LVOT obstruction
 - SAM

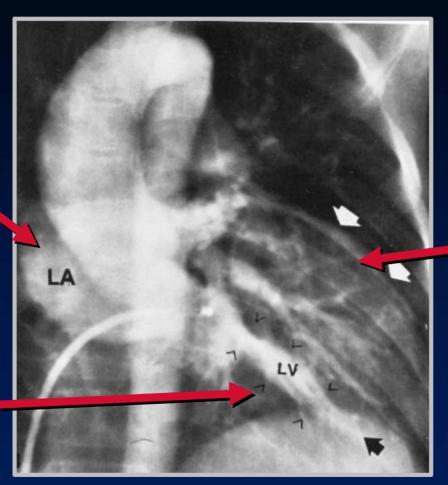


Hypertrophic Cardiomyopathy

ECG-gated spin-echo image in coronal plane - severe symmetrical hypertrophy of LV

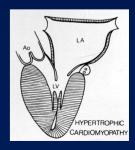

Asymmetric septal hypertrophy

Thickened apex


©Miller-Requisites

Hypertrophic Cardiomyopathy

Mitral Regurgitation From SAM


Almost complete emptying of LV

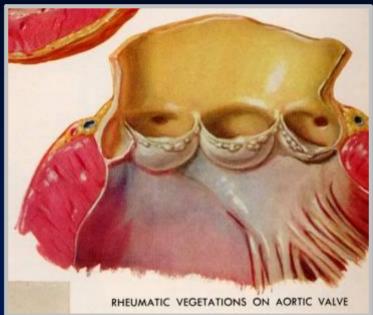
Marked wall thickening

©Elliot-Cardiac Imaging

Hypertrophic Cardiomyopathy

	Dilated	Restrictive	Hypertrophic
LV Cavity Size	Increased	Normal	Normal
Mitral Regurgitation	Mild	Variable	HOCM: mild to severe
Wall motion	Global hypokinesis	Normal	Hyperkinetic
Mural thrombi	Frequent	Occasional	None
Systolic Function	Decreased	Normal	Increased
Diastolic Function	Normal	Decreased	Normal
Ejection Fraction	Decreased	Normal	Normal

Endocarditis


EndocarditisGeneral

- Triad: fever, murmur, septicemia
- Causes
 - Rheumatic fever
 - Infection
 - Non-bacterial thrombotic endocarditis
 - Libman-Sacks Endocarditis
 - Smaller vegetations than bacterial

Endocarditis General

- Vegetations frequently produce regurgitation of affected valve
- Can embolize to lungs or aorta
 - Septic emboli in lungs
 - May produce mycotic aneurysm of aorta



© Frank Netter, MD Novartis®

Rheumatic Vegetations

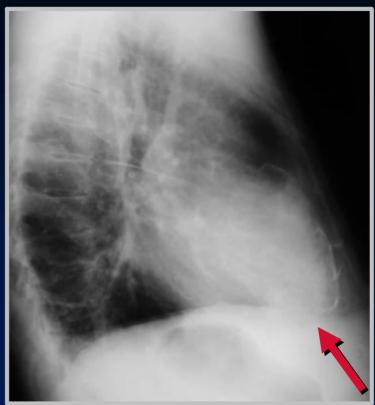
Septic Emboli to Lungs

Pericardium

Pericarditis

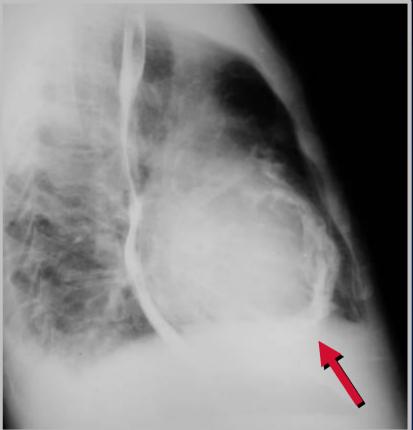
Constrictive Pericarditis

- Thickening of pericardium impeding diastolic filling
- Thickened pericardium may calcify
 - 50% on chest x-rays
- Right-sided failure due to impeded RV filling


Constrictive Pericarditis Causes

- Viral pericarditis (most common)
- Tuberculous pericarditis
- Uremic pericarditis
- Post-cardiac surgery

Constrictive Pericarditis Calcification


- About 50% with constrictive pericarditis calcify
 - Eggshell viral and uremic
 - Shaggy, amorphous in AV grooves TB
- Calcified pericardium doesn't imply constriction

Constrictive Pericarditis
Eggshell calcification as seen in viral or uremic pericarditis

Constrictive Pericarditis
Thick calcification as seen in tuberculous pericarditis

Constrictive Pericarditis vs. Restrictive Cardiomyopathy

- May be impossible to distinguish two
- Both have abnormal filling of the heart
- CT best for calcified pericardium
 - If calcified, not restrictive cardiomyopathy
- Normal pericardium on both CT and MRI
 - Excludes constrictive pericarditis

Constrictive Pericarditis vs. Restrictive Cardiomyopathy

	Constrictive Pericarditis	Restrictive Cardiomyopathy
Heart size	Normal	Normal
Pericardial Calcification	Present	Absent
Right Atrial Border	Straight	Convex
Right Atrial Wall Thickness	Increased	Normal

Congenital Defect in the Pericardium

Congenital Pericardial Defect Embryogenesis

- Premature atrophy of left duct of Cuvier (cardinal vein) leads to
- Failure of nourishment of left pleuropericardial membrane which leads to failure of pericardium to develop

Congenital Pericardial Defect General

- Male:female ratio of 3:1
- May be detected at any age
 - Most common in low 20's

Congenital Pericardial Defect Location

• Foraminal defect on left side	35%
Complete absence of left side	35%

 Complete absence of left side 35% gives levoposition of heart

		470/
o Diab	hragmatic surface	17%
	inaginatio carraco	11/0

Total bilateral absence

Right sided

Congenital Pericardial Defect Associations

- Bronchogenic cysts
- VSD, PDA, mitral stenosis
- Diaphragmatic hernia
- Sequestration

Congenital Pericardial Defect Clinical

- Mostly asymptomatic
- May have:
 - Tachycardia
 - Palpitations
 - Right bundle block
 - Positional discomfort lying on left side
 - Chest pain

Congenital Pericardial Defect X-ray Findings

- Focal bulge in area of main pulmonary artery
- Sharply marginated
- Lung may interpose between heart-left hemidiaphragm
- Increased distance between sternum and heart 2° absence of sternopericardial ligament

Congenital Pericardial Defect X-ray Findings-Continued

- Levoposition of heart
- Pneumopericardium following pneumothorax

Congenital Defect in the Pericardium

Congenital Pericardial Defect Treatment

- Since herniation and strangulation of left atrial appendage or herniation of LA/LV may occur
- Foraminal defect requires surgery

The End

To start over from beginning, click here